# How is that even a question?

Previous posts have all not mentioned quantum effects at all. That’s the point – we are building physics from General Relativity, so QM must be a consequence of the theory, right?

Here are some thoughts:

QM seems to not like even *special* relativity much at all. It is a Newtonian world view theory that has been modified to work in special relativity for the most part, and in General Relativity not at all.

There are obvious holes in QM – the most glaring of which is the perfect linearity and infinitely expandable wave function. Steven Weinberg has posted a paper about a class of QM theories that solve this problem. In essence, the solution is to say that the state vector degrades over time, so that hugely complex, timeless state vectors actually self collapse due to some mechanism. (Please read his version for his views, as my comment are from my point of view.)

If one were to look for a more physical model of QM, something along the lines of Bohm’s hidden variables, then what would we need:

**Some sort of varying field that supplies ‘randomness’:**

- This is courtesy of the monopole field discussed in previous posts about the proton and the electron.

**Some sort of reason for the electron to not spiral into the proton:**

- Think De Broglie waves – a ‘macroscopic’ (in comparison to the monopole field) wave interaction. still these waves ‘matter waves’ are closely tied to the waves that control the electromagnetic field.
- Put another way – there is room for many forces in the GR framework, since dissimilar forces ignore each other for the most part.
- Another way of thinking about how you talk about multidimensional information waves (hilbert spaces of millions of dimensions for example), is to note that as long as there is a reasonable mechanism for keeping these information channels separate, then there is a way to do it all with a meta field – GR.

**Quantum field theory:**

- This monopole field is calculable and finite, unlike the quantum field theories of today, which are off by a factor of 10
^{100}when trying to calculate energy densities, etc.

Great page and website! Well-done for this. I shall keep viewing with interest, as like others, I suspect that QM may not be the last word.