The recent experimental proposals by Bose et al. and Marletto et al. (BMV) outline a way to test for the quantum nature of gravity by measuring the gravitationally induced differential phase accumulation over the superposed paths of two ∼10^-14kg masses.

This work predicts the outcome of the BMV experiment in Bohmian trajectory gravity – where classical gravity is assumed to couple to the particle configuration in each Bohmian path, as opposed to semi-classical gravity where gravity couples to the expectation value of the wave function, or of quantized gravity, where the gravitational field is itself in a quantum superposition.

In the case of the BMV experiment, Bohmian trajectory gravity predicts that there will be quantum entanglement. This is surprising as the gravitational field is treated classically.

Open minds wanted. Not found.-Have to say a bit shaken by the attitude towards alternative viewpoints, (and Penrose!) in the audience. See 2m45s. @Perimeter? This opinion video has a few short excerpts from an excellent video on gravitational entanglement given at the Perimeter Institute on Sept 21, 2022. See PIRSA.org for the entire video. The most interesting bit is […]

Consider Only General Relativity-Every old style, Newtonian theory in modern physics – which is all of them except General Relativity, do not fit well with GR itself. This is curious, as for instance the Dirac equation, the Standard Model, QM, QFT all work well with each other (hence the Standard Model). In an attempt to unify everything else […]

Quantum statistics in Bohmian trajectory gravity-T C Andersen 2019 J. Phys.: Conf. Ser. 1275 012038 – 9th International Workshop DICE2018 : Spacetime – Matter – Quantum Mechanics Abstract. The recent experimental proposals by Bose et al. and Marletto et al. (BMV) outline a way to test for the quantum nature of gravity by measuring gravitationally induced differential phase accumulation over the superposed paths of […]

Gravitation finally meets Quantum Mechanics in experiments-I think that the biggest news in a while in quantum mechanics is newly forming ability of experimenters to do quantum experiments with gravity. A fine example of an experiment already done is Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function by Asenbaum et al. They conclude: Therefore, the phase shift […]