Is Dark Matter merely Inactive Matter?

February 5, 2017 — Leave a comment

Dark Matter – cuspy core problem.

Proposed solution is that dark matter wakes up, turns into matter and then self repels/forms stars, etc.This means no cusp is found.

Note how in the most tenuous gas clouds (well cold ones – the hot tenuous galactic halo does not count as its a supernova effect), the density is the exact same as the dark matter density?

From – note how dark matter is about about 0.2 protons per cm^3 (BR 13 measurement) . One would think that in the disk of the milky way, this close to the galactic core that the DM density is about as large as it gets. Which seems right:


The Dark Matter Halo of the Milky Way, AD 2013 –

We find that the cored profile is the preferred one, with a shallow central density of ρH ∼ 4 × 107M⊙/kpc3 and a large core radius RH ∼ 10kpc, as observed in external spirals and in agreement with the mass model underlying the Universal Rotation Curve of spirals.

From wikipedia

Note how the lowest density clouds are 0.2 – 0.5 protons/cm^3

Why is this the same density? Answer: The dark matter has a maximum density, if density gets higher it lights up and turns into protons/electrons/H – which results in WIM and WNM clouds. Dark matter might be sleeping matter.


There is a problem – what heats the Warm Ionized Medium?


Dark Matter waking up might naturally result in WIM over WNM.

Also see



You can see a clear (well kinda clear -its astronomy data…) cut at 0.04 electrons (ie protons too) per cm3.

Screen Shot 2017-10-08 at 6.48.43 PM

To me this is exciting. WIM has a density wall at about 0.02 particles / cm3 – while dark matter has a density of about the same number (within a factor of 10).

The maximum density of dark matter is about equal to the low-density wall of WIM.

Dark matter does not exist at high densities. So on a galaxy rotation curve, ie

ie – right at about the 15 kPc mark. Dark matter really not needed much below 10 kPc at all. Dark matter turns into regular matter at about these distances. Clumps of regular matter (which is how they get the rotation curves) are centers for DM – regular matter promotion. This promotion results in anomalous heating of the WIM.

Screen Shot 2017-10-08 at 7.22.21 PM


Also see: – the ionizing problem is still around. The O star theory seems kinda weak…

Thus O stars are able to ionize the WIM (other obvious sources of Ionizing radiation are weaker), but how do the ionizing photons get from the location of these stars in the thin disk of the Milky Way to far above the mid-plane?



No Comments

Be the first to start the conversation!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s